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Abstract. In this paper, we consider the problem of the existence of a
least absolute deviations estimator for the Michaelis–Menten model func-

tion. We give necessary and sufficient conditions under which the least
absolute deviations problem has a solution. In order to illustrate the use-
fulness of such conditions we give several numerical examples.

1. Introduction

Michaelis-Menten enzymatic reaction represents one of the most basic and
simplest chemical reactions ([18]). It was first introduced by L.Michaelis and
M.Menten in [16]. This reaction contains a substrate S, reacting with an enzyme
E to form a complex C, which in turn converts to product P and enzyme E and
it can be represented schematically as follows:

E + S
k1

−→
←−
k−1

C
k2−→E + P. (1.1)

The terms k1, k−1 and k2 are rate constants for the association of a substrate
and an enzyme, the dissociation of an unaltered substrate from the enzyme and
the dissociation of the product from the enzyme, respectively. A double arrow
indicates that the first reaction is reversible, while a single arrow indicates that
the second reaction can go just in one way.

By applying the law of mass action on the chemical reaction (1.1) and using
the so–called quasi–steady state approximation (see [16], [18]), the functional
relation between the reaction velocity and the concentration of a substrate can
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2 KRISTIAN SABO

be obtained as:

V (S) =
VmaxS

KM + S
, (1.2)

where V is the reaction velocity at substrate concentration S, KM = k−1+k2

k1
is

the half–saturation constant (also known as the Michaelis constant); that is, the
value of S, where V (S) is half-maximal and Vmax = k2 Etotal, is the maximum
velocity of this reaction wherein Etotal is the total amount of enzyme.

Function (1.1) is known as the Michaelis–Menten function. Since Vmax,KM >
0, the function S 7→ V (S) defined by (1.2) is positive, increasing and concave
on [0,∞⟩, its graph passes through the origin and has a horizontal asymptote
V = Vmax. Let us mention that Michaelis–Menten function has been widely
used to describe physical and biological phenomena with saturation (see e.g. [13],
[15]).

Let us suppose that data–points (wi, Si, Vi), i = 1, . . . ,m are given, where
Si > 0 are the measured values of the substrate concentration, Vi > 0 are the
measured values of the reaction velocity and wi > 0 are the corresponding data
weights, which describe the assumed relative accuracy of the data. The unknown
parameters Vmax > 0 and KM > 0 of the Michaelis-Menten function have to be
estimated on the basis of the given data–points.

One of the most popular approaches to the estimation of unknown parameters
in practical applications, especially in the case when measurement data are con-
taminated by normally distributed random errors, is the least squares principle.
The least squares principle is based on minimizing the function G : P → [0,∞⟩
defined by

G(Vmax,KM ) =

m∑
i=1

wi

(
VmaxSi

KM + Si
− Vi

)2

, (1.3)

where P = {(a, b)} : a, b > 0} (see e.g., [11, 12, 22]). An ordered pair of optimal
parameters (V ⋆

max(ls),K
⋆
M (ls)) ∈ P such that

G (V ⋆
max(ls),K

⋆
M (ls)) = min

(Vmax,KM )∈P
G(Vmax,KM ) (1.4)

is called a least squares estimator, if it exists. Numerical methods for solving
the nonlinear least squares problem are described in [6, 8]. In [11], it was shown
that it is possible that a least squares estimator does not exist. It is also shown
that it is possible that problem (1.3)–(1.4) has infinitely many solutions. Finally,
sufficient conditions were given on data that guarantee the existence of a least
squares estimator. More precisely, in [11], the following statements were proved:

(I) If the data (wi, Si, Vi), i = 1, . . . ,m, 0 < S1 ≤ . . . ≤ Sm, S1 < Sm,
m ≥ 3, are such that
(i) the points (Si, Vi), i = 1, . . . ,m, all lie on some slanted line y = k t,

k ̸= 0 or
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(ii) V1 = V2 = . . . = Vm,
then the least squares problem given in (1.3)–(1.4) has no solution.

(II) If the data (wi, Si, Vi), i = 1, . . . ,m, m ≥ 3, are such that 0 < S1 ≤ S2 ≤
. . . ≤ Sm, Vi > 0, wi > 0 and S1 = Sm =: ξ0, then any point (a, b) ∈ P,

such that a = V
ξ0
(b + ξ0), V =

∑m
i=1 wiVi∑m
i=1 wi

, b > 0 is a least squares

estimator, i.e., there exist infinitely many least squares estimators for
the Michaelis–Menten function.

(III) If the data (wi, Si, Vi), i = 1, . . . ,m, m ≥ 3, are such that 0 < S1 ≤
S2 ≤ . . . ≤ Sm, Vi > 0, wi > 0 and if they fulfill the following conditions

m∑
i=1

wi

(
m∑
i=1

wiSiVi

)2

≤
m∑
i=1

wiS
2
i

(
m∑
i=1

wiVi

)2

m∑
i=1

wi

Si

m∑
i=1

wiVi >
m∑
i=1

wi

m∑
i=1

wi
Vi

Si
(1.5)

or

m∑
i=1

wi

(
m∑
i=1

wiSiVi

)2

≥
m∑
i=1

wiS
2
i

(
m∑
i=1

wiVi

)2

m∑
i=1

wiSiVi

m∑
i=1

wiS
3
i >

m∑
i=1

wiS
2
i

m∑
i=1

wiS
2
i Vi, (1.6)

then a least squares estimator for the Michaelis-Menten function exists.

Cases (I) and (II) suggest on possibility of numerical instability of the corre-
sponding numerical procedure for searching an optimal parameters for Michaelis–
Menten function if the set of data–points “almost fulfilled” these requirements.

Let us mention that inequalities (1.5) and (1.6) from (III) are in connection
with the well known Chebyshev sum inequality (see e.g. [17]). Chebyshev sum
inequality is usually stated as follows. Let 0 < x1 ≤ x2 ≤ . . . ≤ xm and
0 < y1 ≤ y2 ≤ . . . ≤ ym. Then for pi > 0, i = 1, . . . ,m:

m∑
i=1

pi

m∑
i=1

pixiyi ≥
m∑
i=1

pixi

m∑
i=1

piyi. (1.7)

Equality holds if and only if x1 = x2 = ... = xm or y1 = y2 = ... = ym. The
inequality (1.7) can be reversed. If 0 < x1 ≤ x2 ≤ . . . ≤ xm and y1 ≥ y2 ≥ . . . ≥
ym > 0, then for pi > 0, i = 1, . . . ,m:

m∑
i=1

pi

m∑
i=1

pixiyi ≤
m∑
i=1

pixi

m∑
i=1

piyi. (1.8)

Similarly, equality holds if and only if x1 = x2 = ... = xm or y1 = y2 = ... = ym.
Consequently, if we suppose that data–points (wi, Si, Vi), i = 1, . . . ,m satisfy
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the following conditions

S1 ≤ S2 ≤ . . . ≤ Sm, S1 < Sm,

V1 ≤ V2 ≤ . . . ≤ Vm, V1 < Vm,

then for

pi := wi, xi := Vi, yi :=
1

Si
, i = 1, . . . ,m,

the inequality (1.5) follows from Chebyshev sum inequality (1.8). Similarly,
if we suppose that data–points (wi, Si, Vi), i = 1, . . . ,m satisfy the following
conditions

S1 ≤ S2 ≤ . . . ≤ Sm, S1 < Sm,

V1/S1 ≥ V2/S2 ≥ . . . ≥ Vm/Sm, V1/S1 > Vm/Sm,

then for

pi := wiS
2
i , xi := Si, yi := Vi/Si, i = 1, . . . ,m

the inequality (1.6) follows from Chebyshev sum inequality (1.7).
Motivated by the results from [11] and using the ideas from [5], in this pa-

per, we consider some existence aspects of the parameter estimation problem
for the Michaelis–Menten model function based on the least absolute deviations
principle:1 (see e.g. [2, 7, 9]), i.e., by minimizing the function

F (Vmax,KM ) =
m∑
i=1

wi

∣∣∣∣ VmaxSi

KM + Si
− Vi

∣∣∣∣ (1.9)

on the set P = {(a, b)} : a, b > 0}. An ordered pair of optimal parameters
(V ⋆

max(lad),K
⋆
M (lad)) ∈ P such that

F (V ⋆
max(lad),K

⋆
M (lad)) = min

(Vmax,KM )∈P
F (Vmax,KM ) (1.10)

is called a least absolute deviations estimator, if it is exists. Since the function
F : P → [0,∞⟩ is non-differentiable, in order to solve the least absolute de-
viations problem (1.4)–(1.10), some special numerical method for non–smooth
optimization should be used (see [1, 9, 24]).

The least absolute deviations principle is an important approach in various
fields of applied research, especially in the case if among the measurement data
a substantial amount of outliers (i.e., wild points) might appear (see e. g. [3, 10,
19, 20, 23]) or when the measurement data are contaminated by random errors
coming from the Laplace distribution.

1The principle is attributed to Josip Rudjer Bošković (1711-1787), Croatian scientist (math-

ematician, physicist, astronomer and philosopher) born in Dubrovnik. Powerful computers
have recently caused great interest in and popularity of that principle, which can be seen in
numerous papers published in journals as well as presented at international conferences dealing
with this issue. A series of such conferences has been dedicated to J.R. Bošković (see [7]).
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The main purpose of this paper is to give the existence results for the least
absolute deviations estimator for the Michaelis–Menten model function. The pa-
per is organized as follows. In Section 2, we give a brief review of the weighted
median of data. In Section 3, we present necessary and sufficient criteria that
guarantee the existence of a least absolute deviations estimator. These criteria
are only theoretical in nature and not suitable for applications, but they have a
very important and practical consequence that presents a useful sufficient exis-
tence result. In Section 4, throughout the numerical experiments we illustrate
the usability of the mentioned sufficient existence results.

2. Weighted median of data

In this section, we will define the weighted median of data and give the cor-
responding properties. The weighted median of data and some of its properties
will be crucial for the main existence results. Let (wi, zi), i = 1, . . . ,m, m ≥ 1,
be some given data, where zi ∈ R and wi > 0 are the corresponding data weights.
The function f : R → R

f(α) =

m∑
i=1

wi |α− zi|, (2.1)

is convex and attains its global minimum. The set Med
j=1,...,m

(wj , zj) of all global

minimizers (i.e., points of global minima) of the function f is convex. Any
element of the set Med

j=1,...,m
(wj , zj) is called a weighted median of the data and

we denote any of these by med
j=1,...,m

(wj , zj) i.e.

med
j=1,...,m

(wj , zj) ∈ argmin
α∈R

f(α).

The following lemma [21, 23] shows that the set Med
j=1,...,m

(wj , zj) can be a one–

point set, in which case it is one of the zi’s, or a segment between two subsequent
data.

Lemma 2.1. Let (wi, zi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data, where
z1 ≤ z2 ≤ . . . ≤ zm are real numbers and wi > 0 are the corresponding data
weights. Then there exists a µ ∈ I, such that yµ ∈ Med

j=1,...,m
(wj , zj). Therefore,

by denoting

J :=
{
ν ∈ I :

ν∑
i=1

wi ≤
W

2

}
,

where W :=
∑m

i=1 wi, the following holds:

(a) if J = ∅, then Med
j=1,...,m

(wj , zj) = {z1};

(b) if J ̸= ∅ and ν0 := max J , then
(i) if

∑ν0

i=1 wi <
W
2 , then Med

j=1,...,m
(wj , zj) = {zν0+1};
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(ii) if
∑ν0

i=1 wi =
W
2 , then Med

j=1,...,m
(wj , yj) = [zν0 , zν0+1].

Note that, if especially m = 1 or z1 = . . . = zm, then Med
j=1,...,m

(wj , zj) = {z1}.
In the case of a large number of data, calculation of the weighted median of

the data may require a long computing time. Several fast algorithms can be
seen in [10].

The connection between the weighted median of data and the least absolute
deviations line which passes through the origin is given by the following lemma.

Lemma 2.2. Let (wi, xi, yi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data, where
xi, yi > 0 and wi > 0 are the corresponding data weights. Then

med
j=1,...,m

(wjxj , yj/xj) ∈ argmin
k>0

m∑
i=1

wi|kxi − yi|,

for every med
j=1,...,m

(wjxj , yj/xj) ∈ Med
j=1,...,m

(wjxj , yj/xj).

Proof. For any k > 0, immediately from the definition of the weighted median
it follows

m∑
i=1

wi|kxi − yi| =
m∑
i=1

wixi

∣∣∣∣k − yi
xi

∣∣∣∣ ≥ m∑
i=1

wixi

∣∣∣∣ med
j=1,...,m

(wjxj , yj/xj)−
yi
xi

∣∣∣∣
=

m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjxj , yj/xj)xi − yi

∣∣∣∣ ,
where equality holds if and only if

k = med
j=1,...,m

(wjxj , yj/xj) ∈ Med
j=1,...,m

(wjxj , yj/xj) .

�
Without proof (see [21, 23]), we give one corollary that shows that there exists

a best least absolute deviations line which passes through at least two different
points of the data. Let us mention that the corresponding proof is based on
Lemmas 2.1 and 2.2.

Corollary 2.0.1. Let (wi, xi, yi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data,
where xi, yi > 0 and wi > 0 are the corresponding data weights. Then there
exist η, κ ∈ I, η ̸= κ and xη ̸= xκ such that(

yη − yκ
xη − xκ

, yη −
yη − yκ
xη − xκ

xη

)
∈ argmin

(α,β)∈R2

m∑
i=1

wi|αxi + β − yi|.

Finally, let us mention that in the case of a large number of data, calculation
of the weighted median of the data may require a long computing time. Several
fast algorithms can be seen in [10].
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3. Existence results

In this section, we give necessary and sufficient conditions that guarantee
the existence of a least absolute deviations estimator (Theorem 3.1). The main
disadvantage of this result is that sometimes it is not easy to verify the conditions
for the given data. However, it is theoretically significant since its consequence is
very practical and it has a useful sufficient existence result (Proposition 3.2). At
the end of this section, we also give some important corollaries of Theorem 3.1.

Theorem 3.1. Let (wi, Si, Vi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data,
where Si, Vi > 0 and wi > 0 are the corresponding data weights. The least
absolute deviations problem for the Michaelis–Menten function (1.9)–(1.10) has
a solution if and only if there exists a point (a0, b0) ∈ P, P = {(a, b) : a, b > 0},
such that

F (a0, b0) ≤min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}
, (3.1)

for some med
j=1,...,m

(wj , Vj) ∈ Med
j=1,...,m

(wj , Vj) and med
j=1,...,m

(wjSj , Vj/Sj) ∈ Med
j=1,...,m

(wjSj , Vj/Sj).

Proof. Let us suppose that the problem (1.9)–(1.10) has a solution (V ⋆
max(lad),K

⋆
M (lad)) ∈

P. Then

F (V ⋆
max(lad),K

⋆
M (lad)) ≤ F (a, b), ∀(a, b) ∈ P.

Particularly, for all b > 0 there hold F (V ⋆
max(lad),K

⋆
M (lad)) ≤ F

(
med

j=1,...,m
(wj , Vj), b

)
and F (V ⋆

max(lad),K
⋆
M (lad)) ≤ F

(
b med

j=1,...,m
(wjSj , Vj/Sj), b

)
, from where by tak-

ing the following limits we obtain

F (V ⋆
max(lad),K

⋆
M (lad)) ≤ lim

b→0+
F
(

med
j=1,...,m

(wj , Vj), b
)

=
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
and

F (V ⋆
max(lad),K

⋆
M (lad)) ≤ lim

b→∞
F
(
b med

j=1,...,m
(wjSj , Vj/Sj), b

)
=

m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣ .
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Finally,

F (V ⋆
max(lad),K

⋆
M (lad)) ≤min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}
.

Let us show the converse. Since F ≥ 0, there exists F ⋆ = inf
(a,b)∈P

F (a, b). Let

(an, bn) ∈ P be a sequence such that

lim
n→∞

F (an, bn) = F ⋆, (3.2)

and let us show that then a sequence (an, bn) is bounded on P. In order to do
this, let us assume the contrary, i.e., that a sequence (an, bn) is unbounded.

If bn → ∞, then one of the following three cases may occur:

(i)
an
bn

→ 0, (ii)
an
bn

→ k > 0, (iii)
an
bn

→ ∞.

For any of the previous cases, let us show that the infimum F ⋆ of the function
F cannot be attained.

(i) From an

bn
→ 0, it follows

lim
n→∞

F (an, bn) =

m∑
i=1

wi

∣∣∣∣∣
an

bn
Si

1 + Si

bn

− Vi

∣∣∣∣∣ =
m∑
i=1

wiVi =: F1.

Let us show that there exists a point from the set P in which the
function F attains the value less than F1. In order to do this, let us
choose an index r ∈ {1, . . . ,m} such that Vr = min{V1, . . . , Vr} and let
us consider the following class of Michaelis–Menten curves

S 7→ VrS

b+ S
, b > 0.

Since Vi ≥ Vr ≥ VrSi

b+Si
, for all i ∈ I it follows

Vi = Vi −
VrSi

b+ Si
+

VrSi

b+ Si
≥
∣∣∣∣ VrSi

b+ Si
− Vi

∣∣∣∣ , i ∈ I,

and finally

F (Vr, b) ≤
m∑
i=1

wiVi, for all b > 0. (3.3)
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(ii) For an

bn
→ k > 0, immediately from Corollary 2.2 it follows

lim
n→∞

F (an, bn) = lim
n→∞

m∑
i=1

wi

∣∣∣∣∣
an

bn
Si

1 + Si

bn

− Vi

∣∣∣∣∣ =
m∑
i=1

wi|kSi − Vi|

≥
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
≥ min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}
.

In accordance with assumption (3.1), there exists a point (a0, b0) ∈ P
such that

F (a0, b0) ≤min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}
,

i.e., the infimum of the function F cannot be attained in this case.
(iii) From an

bn
→ ∞, it follows

lim
n→∞

F (an, bn) =
m∑
i=1

wi

∣∣∣∣∣
an

bn
Si

1 + Si

bn

− Vi

∣∣∣∣∣ = ∞,

and in this way the functional F cannot attain its infimum.

Note that it has been proved that a sequence (bn) is bounded. Let bn → K⋆
M ≥ 0.

If an → ∞, then limn→∞ F (an, bn) = ∞, contradicts (3.2), and it follows
that a sequence (an) is bounded, i.e., an → V ⋆

max ≥ 0.
It remains to prove K⋆

M ̸= 0 and V ⋆
max ̸= 0. If we suppose that V ⋆

max = 0,
then for all b > 0 we have F (V ⋆

max, b) =
∑m

i=1 wiVi = F1. In accordance with
(3.3), there exists a point at which the function F attains a smaller value and it
means that the function F cannot attains its infimum in this case.

If K⋆
M = 0, then for all a > 0 it follows

F (a,K⋆
M ) =

m∑
i=1

wi|a− Vi| ≥
m∑
i=1

wi| med
j=1,...,m

(wj , Vj)− Vi|.
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In accordance with assumption (3.1), it follows that there exists a point (a0, b0) ∈
P such that

F (a0, b0) ≤
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
and that means that the function F cannot attains its infimum in this way.

Finally, it has been proved that (V ⋆
max,K

⋆
M ) ∈ P. Since the function F is

continuous, we have

inf
(a,b)∈P

F (a, b) = lim
n→∞

F (an, bn) = F (V ⋆
max,K

⋆
M ) .

�

The following corollary shows that it is possible that the least absolute devi-
ations estimator does not exist.

Corollary 3.1.1. Let (wi, Si, Vi), 0 < S1 ≤ S2,≤ . . . ≤ Sm, S1 < Sm Vi >
0, i ∈ I = {1, . . . ,m}, m ≥ 3, be some data. If

a) all points (Si, Vi) lie on some line y = k t, k > 0,
b) all points (Si, Vi) lie on line y = l, l > 0,

then the least absolute deviations estimator does not exist.

Proof. Note that in both of these cases

min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ , m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}

= 0.

Since the line y = k t, k > 0 (i.e., y = l, l > 0) and the Michaelis-Menten
function have at most two (i.e., one) intersection points and m ≥ 3, there holds
F (a, b) > 0, for all (a, b) ∈ P and in accordance with Theorem 3.1, the least
absolute deviations estimator does not exist. �

The next corollary shows that there exist data–points such that the least
absolute deviations problem has infinitely many solutions.

Corollary 3.1.2. Let (wi, Si, Vi), 0 < S1 = S2 = · · · = Sm =: S̄, Vi > 0, i ∈ I
be a data; then the least absolute deviations problem has infinitely many solu-
tions.

Proof. Note that every point

(
b+S̄
S̄

med
j=1,...,m

Vj , b

)
∈ P, b > 0 is a least abso-

lute deviations estimator for the Michaelis–Menten function. Indeed, by using
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Lemma 2.2 we obtain

F (a, b) =
m∑
i=1

wi

∣∣∣∣ aS̄

b+ S̄
− Vi

∣∣∣∣ = m∑
i=1

wi
S̄

b+ S̄

∣∣∣∣a− b+ S̄

S̄
Vi

∣∣∣∣
≥

m∑
i=1

wi
S̄

b+ S̄

∣∣∣∣b+ S̄

S̄
med

j=1,...,m
Vj −

b+ S̄

S̄
Vi

∣∣∣∣
=

m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

Vj − Vi

∣∣∣∣ ,
where the equality holds for a = b+S̄

S̄
med

j=1,...,m
Vj for any positive real number

b. �

Unfortunately, necessary and sufficient criteria given in Theorem 3.1 are only
theoretical in nature and not suitable for applications. The following proposition
gives a practical sufficient existence result.

Proposition 3.2. Let (wi, Si, Vi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data,
where Si, Vi > 0 and wi > 0 are the corresponding data weights. Lets µ, ν ∈
{1, . . . ,m} such that med

j=1,...,m
(wj , Vj) = Vµ and med

j=1,...,m
(wjSj , Vj/Sj) =

Vν

Sν
, for

some med
j=1,...,m

(wj , Vj) ∈ Med
j=1,...,m

(wj , Vj) and med
j=1,...,m

(wjSj , Vj/Sj) ∈ Med
j=1,...,m

(wjSj , Vj/Sj).

Then the least absolute deviations problem for the Michaelis-Menten function has
a solution if one of the following two conditions holds

m∑
i=1

wi

(
|Vµ − Vi| −

∣∣∣∣Vν

Sν
Si − Vi

∣∣∣∣) ≥ 0 (3.4)

m∑
i=1

wi sign
(
VνSi − ViSν

)
Si (Si − Sν) > 0, (3.5)

or

m∑
i=1

wi

(
|Vµ − Vi| −

∣∣∣∣Vν

Sν
Si − Vi

∣∣∣∣) ≤ 0 (3.6)

m∑
i=1

wi sign (Vµ − Vi)
Sµ − Si

Si
> 0. (3.7)

Proof. Let us suppose that data points satisfy conditions (3.4)–(3.5). In accor-
dance with Theorem 3.1, it is enough to show that in this case there exists a
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point (a0, b0) ∈ P such that

F (a0, b0) ≤ min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}

=

m∑
i=1

wi

∣∣∣∣Vν

Sν
Si − Vi

∣∣∣∣ .
In order to do this, let us consider the following class of Michaelis-Menten curves

S 7→ yν(b+ Sν)S

Sν(b+ S)
, b > 0.

There holds

lim
b→∞

F

(
Vν

Sν
(b+ Sν) , b

)
=

m∑
i=1

wi

∣∣∣∣Vν

Sν
Si − Vi

∣∣∣∣ .
Note that there exists sufficiently large B > 0 such that the function

b 7→ F

(
Vν

Sν
(b+ Sν) , b

)
=: Φ(b)

is continuously differentiable on ⟨B,∞⟩ and consequently there exists

lim
b→∞

b2
∂Φ(b)

∂b
=

Vν

Sν
lim
b→∞

m∑
i=1

wi sign

(
Vν(b+ Sν)Si

Sν(b+ Si)
− yi

)
b2Si(Si − Sν)

(b+ Si)2

=
Vν

Sν

m∑
i=1

wi sign (VνSi − ViSν)Si(Si − Sν) > 0.

Therefore, there exist sufficiently large B ≥ B such that the function b 7→ Φ(b)
is strictly increasing on ⟨B,∞⟩, i.e., for every b ∈ ⟨B,∞⟩ there holds

F

(
Vν

Sν
(b+ Sν) , b

)
= Φ(b) ≤

m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣ .
Let us now suppose that data points satisfy (3.6)–(3.7). Similarly to the

previous cases, in accordance with Theorem 3.1, it is enough to show that in
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this case there exists a point (a0, b0) ∈ P such that

F (a0, b0) ≤ min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ ,
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}

=
m∑
i=1

wi |Vµ − Si| .

In order to do this, let us consider the following class of Michaelis-Menten curves

S 7→ Vµ(b+ Sµ)S

Sµ(b+ S)
, b > 0.

There holds

lim
b→0+

F

(
Vµ

Sµ
(b+ Sµ) , b

)
=

m∑
i=1

wi |Vµ − Vi| .

Note that there exists sufficiently small β > 0 such that the function

b 7→ F

(
med

j=1,...,m
(wj , Vj), b

)
=: Ψ(b)

is continuously differentiable on ⟨0, β⟩ and consequently there exists

lim
b→0+

∂Ψ(b)

∂b
=

Vµ

Sµ
lim
b→∞

m∑
i=1

wi sign

(
Vµ(b+ Sµ)Si

Sµ(b+ Si)
− Vi

)
Si(Si − Sµ)

(b+ Si)2

= −Vµ

Sµ

m∑
i=1

wi sign (Vµ − Vi)
Sµ − Si

Si
< 0.

Therefore, there exist sufficiently small β ≤ β such that the function b 7→ Ψ(b)
decreases on ⟨β,∞⟩, i.e., for any b ∈ ⟨0, β⟩ there holds

F

(
Vµ

Sµ
(b+ Sµ) , b

)
= Ψ(b) ≤

m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ .
�

Corollary 3.2.1. Let (wi, Si, Vi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data,
where 0 < S1 ≤ S2 ≤ . . . ≤ Sm, S1 < Sm, Vi > 0 and wi > 0 are the corre-
sponding data weights. If the data satisfy the following two conditions

V1 ≤ . . . ≤ Vm, V1 < Vm (3.8)

V1/S1 ≥ . . . ≥ Vm/Sm, V1/S1 > Vm/Sm, (3.9)

then the least absolute deviations problem has a solution.
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Proof. Let µ, ν ∈ {1, . . . ,m} such that

Vµ = med
j=1,...,m

(wj , Vj) ∈ Med
j=1,...,m

(wj , Vj)

and
Vν

Sν
= med

j=1,...,m
(wjSj , Vj/Sj) ∈ Med

j=1,...,m
(wjSj , Vj/Sj).

Since the data satisfy conditions (3.8)–(3.9), there holds

V1 ≤ V2 ≤ . . . ≤ Vµ−1 ≤ Vµ ≤ Vµ+1 ≤ . . . ≤ Vm, V1 < Vm

V1/S1 ≥ . . . ≥ Vν−1/Sν−1 ≥ Vν/Sν ≥ Vν+1/Sν+1 ≥ . . . ≥ Vm/Sm, V1/S1 > Vm/Sm

and

S1 ≤ S2 ≤ . . . ≤ Sµ−1 ≤ Sµ ≤ Sµ+1 ≤ . . . ≤ Sm, S1 < Sm,

and consequently
m∑
i=1

wi sign (VνSi − ViSν)Si (Si − Sν) > 0 and

m∑
i=1

wi sign (Vµ − Vi)
Sµ − Si

Si
> 0.

Immediately from Proposition 3.2 it follows that a least absolute deviations
estimator for the Michaelis-Menten function exists. �

At the and of this section, let us note that in various applications different
linearizations of the Michaelis–Menten function are also considered, such as (see
e.g., [14]):

(i) Lineweaver–Burk transformation: 1
V = 1

Vmax
+ KM

Vmax

1
S ,

(ii) Hannes–plot transformation: S
V = KM

Vmax
+ S

Vmax
,

(iii) Eadie–Hofstee transformation: V = Vmax −KM
V
S .

In this way, the nonlinear fitting problem could be approximated with the fol-
lowing linear least absolute deviations problems:

m∑
i=1

wi

∣∣∣∣ 1

Vmax
+

KM

Vmax

1

S
− 1

Vi

∣∣∣∣ = m∑
i=1

wi

∣∣∣∣α 1

S
+ β − 1

Vi

∣∣∣∣→ min
(α,β)∈P

α :=
KM

Vmax
, β :=

1

Vmax
.

 , (3.10)

m∑
i=1

wi

∣∣∣∣ KM

Vmax
+

S

Vmax
− Si

Vi

∣∣∣∣ = m∑
i=1

wi

∣∣∣∣αSi + β − Si

Vi

∣∣∣∣→ min
(α,β)∈P

α :=
1

Vmax
, β :=

KM

Vmax

 , (3.11)

m∑
i=1

wi

∣∣∣∣Vmax −KM
Vi

Si
− Vi

∣∣∣∣ = m∑
i=1

wi

∣∣∣∣αVi

Si
+ β − Vi

∣∣∣∣→ min
(α,β)∈P

α := −KM , β := Vmax

 . (3.12)



LEAST ABSOLUTE DEVIATIONS PROBLEM 15

The linear least absolute deviations problems (3.10)–(3.12) can be solved by
using the method for searching for a best least absolute deviations line proposed
in [21] and [23]. From Corollary 2.0.1, it follows that problems (3.10)–(3.12)
have an optimal solutions but the corresponding optimal parameters may not
be positive. Finally, the following proposition shows that under the conditions

V1 < . . . < Vm, (3.13)

V1/S1 > . . . > Vm/Sm, (3.14)

problems (3.10)–(3.12) have positive optimal solutions.

Proposition 3.3. Let (wi, Si, Vi), i ∈ I = {1, . . . ,m}, m ≥ 2, be some data,
where 0 < S1 ≤ S2 ≤ . . . ≤ Sm, S1 < Sm,Vi > 0 and wi > 0 are the correspond-
ing data weights. If the data satisfy conditions (3.13)–(3.14), then problems
(3.10)–(3.12) have positive optimal solutions.

Proof. Let us suppose that the data satisfy conditions (3.8)–(3.9). Let us con-
sider problem (3.10). In accordance with Corollary 2.0.1, there exists η, κ ∈ I,
η ̸= κ, and Sη ̸= Sκ such that

KM

VM
=

1
Vη

− 1
Vκ

1
Sη

− 1
Sκ

=
SηSκ

VηVκ

(
Vκ − Vη

Sκ − Sη

)
> 0,

1

VM
=

1

Vη
−

1
Vη

− 1
Vκ

1
Sη

− 1
Sκ

1

Sη
= −SηSκ

VηVκ

 Vη

Sη
− Vη

Sη

Sη − Sκ

 > 0

.
Similarly, for problems (3.11) and (3.12) we obtain

1

Vmax
=

Sη

Vη
− Sκ

Vκ

Sη − Sκ
> 0,

KM

Vmax
=

Sη

Vη
−

Sη

Vη
− Sκ

Vκ

Sη − Sκ
Sη =

SηSκ

VηVκ

(
Vη − Vκ

Sη − Sκ

)
> 0,

and

KM = − Vη − Vκ

Vη

Sη
− Vκ

Sκ

> 0, Vmax = Vη −
Vη − Vκ

Vη

Sη
− Vκ

Sκ

Vη

Sη
=

VηVκ

SηSκ

 Sη − Sκ

Vκ

Sκ
− Vη

Sη

 > 0,

respectively. �

4. Numerical examples

In this section, we give three numerical examples. The first example shows
that it is possible that a least absolute estimator for the Michaelis–Menten func-
tion exists and at the same time that linearized problems (3.10)–(3.12) have
negative solutions.
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Figure 1. The region D = {(a, b) ∈ P : F (a, b) ≤ FE} gener-
ated by Mathematica instruction RegionPlot

Example 1. We are given the set of data–points {(wi, Si, Vi) : i ∈ I}, I =
{1, . . . , 5}, where

wi 1 1 1 1 1
Si 1 2 3 4 5
Vi 0.07 6.84 2.15 0.19 2.03

Figure 1 shows the region D = {(a, b) ∈ P : F (a, b) ≤ FE}, P = {(a, b) : a, b >
0} (see Theorem 1), where

FE = min

{
m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wj , Vj)− Vi

∣∣∣∣ , m∑
i=1

wi

∣∣∣∣ med
j=1,...,m

(wjSj , Vj/Sj)Si − Vi

∣∣∣∣
}

= 8.73.

Since D ≠ ∅, in accordance with Theorem 1, it follows that a least absolute
deviations estimator exists. It can also be easily verified that the data satisfy
the conditions from Proposition 3.2. On the other hand, optimal parameters
(see Table 1) obtained by solving the minimization problem for the linearized
Michaelis Menten model function (3.10)–(3.12) are not positive.

The next example illustrates the usefulness of sufficient conditions proposed
in Proposition 3.2 and its comparison with the existence of optimal parameters
obtained from linearized problems (3.10)–(3.12).
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Parameters Lineweaver–Burk Hannes–plot Eadie–Hofstee
Vmax -0.33833 1.87318 0.09634
KM -5.83333 -0.38627 -1.97183

Table 1. Optimal parameters for the linearized Michaelis–
Menten model–function

Example 2. A set of data–points {(1, Si, Vi) : i ∈ I}, I = {1, . . . ,m} is given
such that

Si = i, Vi =
2Si

1 + Si
+ ϵi,

where ϵi ∼ L(0, 0.4) is a Laplace-distributed additive error with scale parameter
σ = 0.4. For any m ∈ {10, 30, 50, 70, 90, 110, 130} 1,000 data sets are gen-
erated. Figure 2 shows the dependence of the number of data–points m and
the number of generated sets satisfying the sufficient existence condition from
Proposition 3.2, i.e., for which optimal parameters are obtained by solving the
linearized least absolute deviations problems (3.10)–(3.12).

0 20 40 60 80 100 120

600

700

800

900

1000

Proposition 1

Lineweaver–Burk

Hannes–plot

Eadie–Hofstee

number of data points

Figure 2. The number of generated sets of data–points satis-
fying the existence conditions on the dependence of the number
of data–points



18 KRISTIAN SABO

Figure 2 illustrates that the number of sets of data–points satisfying the
sufficient condition from Proposition 3.2 is always larger than the number of
data sets for which linearized problems (3.10)–(3.12) have a solution. Note also
that an increase in the number of data m results in an increase in the number of
data–sets for which least absolute deviations problems (1.9)–(1.10), i.e., (3.10)–
(3.12) have solutions.

In Corrollary 3.1.1 it is shown in which cases it is possible that the least
absolute deviations estimator does not exist. Similarly, in Corrollary 3.1.2 it is
shown that there exist data–sets such that corresponding least absolute devia-
tions problem has infinitely many solutions. For both of cases there is a very
little probability that a data–set satisfies these conditions. The following exam-
ple illustrates some difficulties with stability of numerical procedure for searching
an optimal parameters for Michaelis–Menten function for the case when data–
points “almost fulfilled” requirements from Corollaries 3.1.1 and 3.1.2.

Example 3. Let I = {1, . . . , 50}. Sets of data–points

S(1)(σ) =

{
(wi, Si, Vi) :=

(
1,

10i

m
,
10i

m
+ ϵi

)
: i ∈ I

}
,

S(2)(σ) =

{
(wi, Si, Vi) :=

(
1,

10i

m
, 5 + ϵi

)
: i ∈ I

}
,

S(3)(σ) =

{
(wi, Si, Vi) :=

(
1, 10 + ϵi,

10i

m

)
: i ∈ I

}
,

are given, where ϵi ∼ N (0, σ2) is a normally-distributed additive error with vari-
ance σ2. For any σ ∈ {0.1, 0.3, 0.5, 0.7} data sets S(1)(σ) (Figure 3 (1)), S(2)(σ)
(Figure 3 (2)) and S(3)(σ) (Figure 3 (3)) are generated such that the existence
condition from Proposition 3.2 is satisfied. According to Corollary 3.1.1, if data–
points lie on the line y = k t, k > 0 or y = l, l > 0, the least absolute deviations
problem has no solution. Similarly, according to Corollary 3.1.2, if data–points
lie on the line t = t0, t0 > 0, then the least absolute deviations problem for
Michaelis–Menten function has infinitely many solutions. Note that data–points
from sets S(1)(σ), S(2)(σ) and S(3)(σ) respectively lie near lines y = t, y = 2
and t = 5. In order to illustrate possible difficulties with numerical method for
searching an optimal parameters for Michaelis–Menten function we will analyze

the graph of the function (a, b) 7→ F (a, b) =
∑m

i=1 wi

∣∣∣ aSi

b+Si
− Vi

∣∣∣ , (a, b) ∈ P for
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data–points sets S(1)(σ), S(2)(σ) and S(3)(σ). Since from Lemma 2.2 follows

F (a, b) =
m∑
i=1

wi

∣∣∣∣ aSi

b+ Si
− Vi

∣∣∣∣ ≥ m∑
i=1

wiSi

b+ Si

∣∣∣∣a− Vi(b+ Si)

Si

∣∣∣∣
≥

m∑
i=1

wiSi

b+ Si

∣∣∣∣ med
j=1,...,m

(
wjSj

b+ Sj
,
Vj(b+ Sj)

Sj

)
− Vi(b+ Si)

Si

∣∣∣∣ =: F (b), b > 0,

and

F (a⋆(lad), b⋆(lad)) = min
(a,b)∈P

F (a, b) ⇔ F (b⋆(lad)) = min
b>0

F (b),

instead of the graph of the function (a, b) 7→ F (a, b) it is enough to consider the
graph of the function b 7→ F (b). Figure 3 shows graph of the function b 7→ F (b)
for sets S(1)(σ), S(2)(σ) and S(3)(σ). Since data–points from S(1)(σ), S(2)(σ)
and S(3)(σ) satisfy the existence condition from Proposition 1, the correspond-
ing least absolute deviations estimators exist. Note that in the neighborhood
of global minimum of the function b 7→ G(b) for sets S(1)(σ) and S(3)(σ) is
“almost constant”. On the other hand, optimal parameter b⋆(lad) of the func-
tion b 7→ G(b) is located closely to 0. Consequently, it can be expected that
the corresponding numerical method for searching an optimal parameters for
Michaelis–Menten function will be extremely unstable i.e. calculated optimal
parameters will be probably incorrect.
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